

The day 6 and 7 adventure at MSC

B. Archambault, P. Bourgouin, G. Hardy, N. Gagnon

Meteorological Service of Canada (MSC)

Background (2008)

 At that time, extended public forecasts covered days 3 to 5. MSC wanted to improve the service provided to Canadians by extending the range to day 7.

Developers' Wishes

- Use the full power of the Global Ensemble Prediction System (GEPS)
 - Confidence intervals
 - Uncertainty information
 - Clustering approach
 - Probabilistic approach

Background (2008)

Constraints

- Time and management constraints (fast-track).
- Smooth integration into the current MSC operational system (deterministic).
- Stable forecast system.

Reality

Use GEPS as a deterministic model.

Clustering approach didn't work.

Today	Fri	Sat	Sun	Mon	Tue	Wed
1	.00	M	W/		~\ <u>\</u>	24
**	و الله	1	7/1	3		
18°C	16°C	16°C	20°C	22 C	19°C	18°C
	10°C	10°C	8°C	10°0	11°C	11°C
	60%				60%	30%

Forecasts by averaging

- Important forecast parameters (POP6, POP12, temperature, cloud cover) are produced by a Perfect Prog (PP) technique applied on every members.
- The 21 statistical values for each parameters are then averaged to produce single values.
- Precipitation types are based on forecast temperature alone (T≥5C → Rain, T< 0C → Snow, else Rain/Snow).
- Averaging the Direct Model Output for all the others parameters (winds, thickness, vertical movement...)

Verification periods

3 periods – 00UTC runs

- Winter	22 February to 22 April 2008	118 stations
----------	------------------------------	--------------

- Summer 1 July to 31 July 2008 118 stations

-Fall 1 October to 1 December 2008 23 stations

-Winter 2010 1 December to 28 February 118 stations

Verifications – the various candidates

ENS: Forecasts based on GEPS (D1-10, PP)

GLB: Forecasts based on Global model using the same post-processing as ENS (D1-10, PP, single model)

GLB-OP: Forecasts based on Global model but using the operational post-processing (UMOS for TT and auto-correction algorithm) (D1-5, single model)

CLIM: Forecasts based on the climatological values during the specific period

Winter (summer, fall): historical operational forecasts

NAEFS: Forecasts based on NAEFS (D1-10, PP)

Temperature (1)

Temperature (2)

Temperature NAEFS, CMC and CLIM

Probability of precipitation – Brier score

Probability of precipitation – Brier score

The 0.2mm threshold for precipitation is quite small.

Probability of precipitation NAEFS and CMC

Flip-Flop

- Common problem for deterministic models
- Sometime, model can produces very different forecast from consecutive runs valid at the same time.
- Most significant parameter for users is precipitation.
- Flip flop here is based on POP

Flip-Flop Index

- Defined as a significant change in POP12 values from 3 consecutive runs valid at the same time.
- A threshold of 30% is used to discriminate between 'dry' and 'wet' forecasts. A flip-flop is detected if successive forecasts crosses the threshold twice.
 - 20% 40% 10% → flip-flop
 20% 40% 35% → no flip-flop
- Flip-flop frequency:
 - F = (number of flip-flop / total number of case) * 100%
- Flip-flop amplitude: mean of the differences between the 3 consecutive values:
 - 20% 40% 10% → amplitude = 25
 - 10% 90% 0% → amplitude = 85

FLIP-FLOP Index (2)

Verification summary

- Useful information, better than climatology.
- GEPS versions perform better than deterministic one.
- GEPS versions less subject to flip-flop.
- NAEFS perform better than GEPS alone.

Following these results

- System works up to 10 days.
- Public forecast only for days 6 and 7.

Conclusion

- This is a first step toward the use of GEPS to produce public forecasts.
- GEPS-based systems produce useful information for public forecasts at D6-7, better than deterministic one.
- The averaging approach tend to produce smooth forecasts. Given the uncertainties at this range, it is desirable behavior. The forecasts are less subject to flip-flop than those based on a single model.
- Using NAEFS ensemble add value to the forecast.

Possible future improvements

- Improve algorithm for precipitation type.
- Produce POP and cloud cover by sampling.
- Use of an higher threshold for POP.
- Investigate possible use of NAEFS ensemble for Canadian public forecast.
- Develop a probabilistic terminology for the public forecast.

